
Cosa Muoverà i Mercati: Dati Lavoro USA e Nuove Mosse della BCE
USA — Shutdown, lavoro “al buio”, dazi come leva Con il governo in shutdown, gli uffici statistici sono fermi: niente payrolls ufficiali, niente jobless claims, pubblicazioni chiave a rischio (trade balance, inventari). Nei dati “surrogati” ADP segnala –32mila posti a settembre, mentre nei payroll di

Le Banche Centrali Hanno Perso il Controllo dell’Economia?
Quando la medicina non funziona più Per decenni il taglio dei tassi è stato l’antibiotico standard delle banche centrali: rendere il denaro più economico per spingere famiglie e imprese a chiedere prestiti, comprare case, investire. Meno risparmio, più spesa, più crescita: questa è la catena

Dazi al 100% sui farmaci: l’ultimatum di Trump che può riscrivere le regole
Era da tempo che i mercati si erano illusi di aver capito le nuove regole del gioco. Poi, all’improvviso, Trump ha rovesciato il tavolo: dazi al 100% sui farmaci brevettati importati negli Stati Uniti. Non una tassa simbolica, ma un vero raddoppio secco dei prezzi.

Investire meglio del 99%: la mappa mentale che ti manca
Per anni ci hanno raccontato una storia rassicurante: un viaggio lineare verso la ricchezza, con un rendimento medio dell’8–10% l’anno, come una retta che sale dolcemente. Una promessa comoda, che funziona perché è ciò che tutti vogliono sentirsi dire. Ma la verità è diversa: i

Oltre il taglio: i segnali che Powell ci ha lasciato
Il FOMC ha consegnato il taglio più atteso dell’anno, ma il vero messaggio non è nei 25 punti base, bensì nelle parole di Powell e nelle proiezioni interne. Per la prima volta la Fed ammette che il rischio lavoro ha superato, almeno per ora, quello

Arriva il taglio, ma Powell ammette la crepa nel mercato del lavoro
Cosa è successo La Federal Reserve ha tagliato i tassi di interesse di 25 punti base, portandoli al 4%-4,25%. Una decisione scontata dai mercati, ma che nasconde un cambio di prospettiva importante. Powell, durante la conferenza stampa, ha ammesso apertamente che il mercato del lavoro
Il Glossario dell’Intelligenza Artificiale
Chatbot
E’ un software finalizzato alla comunicazione in linguaggio naturale con esseri umani e con il fine di automatizzare particolari compiti o reperire informazioni da banche dati. Questi prodotti possono sostenere conversazioni con le persone su argomenti che vanno dalle curiosità storiche alle ricette alimentari. I primi esempi sono gli strumenti che i fornitori di servizi utilizzano nelle loro pagine “Contattaci” come prima risorsa per i clienti che necessitano di assistenza. Chatbot come ChatGPT di OpenAI stanno rivoluzionando il modo in cui effettuiamo ricerche su Internet.
Deepfake
E’ un contenuto falso creato utilizzando tecniche di deep learning partendo da immagini, video o registrazioni audio reali. Il termine “deepfake” è infatti una combinazione di “deep learning” e “fake”. I deepfake possono essere altamente realistici e convincenti. Ad esempio, un video deepfake potrebbe far sembrare che un personaggio pubblico stia tenendo un discorso che non ha mai pronunciato, oppure potrebbe sovrapporre il volto di qualcuno al corpo di un’altra persona in un video.
Deep Learning
E’ un sottoinsieme del machine learning che si ispira alla struttura e alla funzione del cervello umano, in particolare alla rete interconnessa di neuroni. Nel deep learning, le reti neurali artificiali con più strati (da cui il termine “profondo”) elaborano i dati ed estraggono le caratteristiche in modo gerarchico. Queste reti sono costituite da nodi interconnessi, o neuroni artificiali, organizzati in strati: strato di input, strati nascosti e strato di output. Ogni neurone riceve dati in input, applica pesi a quell’input, esegue un’operazione matematica (come una somma ponderata) e quindi applica una funzione di attivazione per produrre un output. Attraverso un processo chiamato training, i modelli di deep learning imparano a riconoscere modelli e caratteristiche nei dati regolando i pesi delle connessioni tra i neuroni. Il deep learning ha dimostrato un notevole successo in vari settori, tra cui il riconoscimento di immagini, l’elaborazione del linguaggio naturale, la sanità, la finanza e i veicoli autonomi.
GPT
Sta per “Generative Pre-trained Transformer”, un tipo di modello linguistico di grandi dimensioni sviluppato da OpenAI. L’architettura del modello GPT si basa sull’architettura del trasformatore, che è molto efficace per l’elaborazione di dati sequenziali come il linguaggio naturale. L’innovazione chiave dei modelli GPT è la loro natura generativa, nel senso che possono generare testo simile a quello umano in base a un determinato suggerimento o contesto. Questa capacità rende i modelli GPT altamente versatili e applicabili a un’ampia gamma di attività di elaborazione del linguaggio naturale, tra cui la generazione di testo, la traduzione linguistica, il riepilogo, la risposta a domande e altro ancora.
Hallucination
E’ un fenomeno in cui un modello di machine learning genera output che non corrispondono alla realtà o non sono coerenti con i dati di input. Le allucinazioni si verificano quando un modello produce previsioni errate o prive di senso, spesso a causa di un adattamento eccessivo, della mancanza di dati di addestramento o di limitazioni intrinseche nell’architettura del modello.
Machine Learning
E’ un sottoinsieme dell’intelligenza artificiale che si concentra sullo sviluppo di algoritmi e modelli statistici che consentono ai computer di apprendere e fare previsioni o decisioni basate sui dati, senza essere esplicitamente programmati per farlo. In sostanza, si tratta di insegnare ai computer ad apprendere modelli e relazioni dai dati per eseguire compiti specifici. Gli algoritmi di machine learning vengono addestrati su dati etichettati, costituiti da coppie input-output. Durante il processo di addestramento, l’algoritmo apprende modelli e relazioni nei dati regolando automaticamente i suoi parametri mirando a ridurre al minimo la differenza tra i risultati previsti e i risultati reali nei dati di addestramento.
Modelli linguistici di grandi dimensioni
Spesso indicati sotto la sigla LLM (Large Language Models), sono una classe di modelli di intelligenza artificiale addestrati su grandi quantità di dati testuali per comprendere e generare un linguaggio simile a quello umano. Questi modelli sono costruiti utilizzando tecniche di deep learning. Contengono da centinaia di milioni a miliardi di parametri, che vengono appresi durante il processo di addestramento, durante il quale il modello è esposto a grandi quantità di dati di testo e impara a prevedere la parola successiva in una sequenza dato il contesto delle parole precedenti. Questo processo consente ai LLM di sviluppare una profonda comprensione dei modelli linguistici e della semantica.
Reti neurali
Le reti neurali sono una classe di algoritmi di machine learning ispirati alla struttura e alla funzione del cervello umano. Sono costituiti da nodi interconnessi, o neuroni artificiali. In una rete neurale, ogni neurone riceve dati di input, applica pesi a tale input, esegue un’operazione matematica (come una somma ponderata) e quindi applica una funzione di attivazione per produrre un output. L’output di uno strato funge da input per lo strato successivo e questo processo continua attraverso la rete fino alla generazione dell’output finale. Le reti neurali apprendono dai dati attraverso un processo chiamato training. Durante l’addestramento, la rete adegua i propri pesi in base alla differenza tra il risultato previsto e il risultato reale (ovvero l’errore). Questa regolazione viene eseguita in modo iterativo utilizzando algoritmi di ottimizzazione che mirano a ridurre al minimo l’errore e migliorare le prestazioni della rete sui dati di addestramento.
Sentient AI
Si riferisce ai sistemi di intelligenza artificiale che possiedono la capacità di percepire, comprendere e rispondere al loro ambiente in maniera simile agli umani. A differenza dei tradizionali sistemi di intelligenza artificiale che si limitano a svolgere compiti specifici sulla base di regole o algoritmi predefiniti, l’intelligenza artificiale senziente mira a simulare aspetti della coscienza e della consapevolezza umana come la percezione, il ragionamento, le emozioni e l’empatia.
Prompt Engineering
L’accuratezza e l’utilità delle risposte di un ampio modello linguistico dipendono in larga misura dalla qualità dei comandi che gli vengono impartiti. I prompt engineers possono ottimizzare le istruzioni in linguaggio naturale per produrre output coerenti e di alta qualità utilizzando la minima potenza del computer.