Oro ai Massimi Storici: Scopriamo i Motivi!

Nell’ultimo mese, il prezzo dell’oro ha raggiunto nuovi massimi storici e assistito a una delle sue più straordinarie accelerazioni di sempre. L’impennata non ha solo sorpreso gli investitori e gli analisti di tutto il mondo, ma ha anche acceso un vivace dibattito su quali fattori

Scopri

Battere un’Indice Azionario: la Sfida dei Gestori di Fondi

Nel dinamico mondo degli investimenti, uno degli obiettivi più ambiti dai gestori di fondi è superare i benchmark di mercato. Ma negli ultimi anni, battere un indice azionario è diventato sempre più difficile. Le cause? L’evoluzione delle strategie di investimento e la crescente complessità dei

Scopri

Il Glossario dell’Intelligenza Artificiale

Chatbot

E’ un software finalizzato alla comunicazione in linguaggio naturale con esseri umani e con il fine di automatizzare particolari compiti o reperire informazioni da banche dati. Questi prodotti possono sostenere conversazioni con le persone su argomenti che vanno dalle curiosità storiche alle ricette alimentari. I primi esempi sono gli strumenti che i fornitori di servizi utilizzano nelle loro pagine “Contattaci” come prima risorsa per i clienti che necessitano di assistenza. Chatbot come ChatGPT di OpenAI stanno rivoluzionando il modo in cui effettuiamo ricerche su Internet.

Deepfake

E’ un contenuto falso creato utilizzando tecniche di deep learning partendo da immagini, video o registrazioni audio reali. Il termine “deepfake” è infatti una combinazione di “deep learning” e “fake”. I deepfake possono essere altamente realistici e convincenti. Ad esempio, un video deepfake potrebbe far sembrare che un personaggio pubblico stia tenendo un discorso che non ha mai pronunciato, oppure potrebbe sovrapporre il volto di qualcuno al corpo di un’altra persona in un video.

Deep Learning

E’ un sottoinsieme del machine learning che si ispira alla struttura e alla funzione del cervello umano, in particolare alla rete interconnessa di neuroni. Nel deep learning, le reti neurali artificiali con più strati (da cui il termine “profondo”) elaborano i dati ed estraggono le caratteristiche in modo gerarchico. Queste reti sono costituite da nodi interconnessi, o neuroni artificiali, organizzati in strati: strato di input, strati nascosti e strato di output. Ogni neurone riceve dati in input, applica pesi a quell’input, esegue un’operazione matematica (come una somma ponderata) e quindi applica una funzione di attivazione per produrre un output. Attraverso un processo chiamato training, i modelli di deep learning imparano a riconoscere modelli e caratteristiche nei dati regolando i pesi delle connessioni tra i neuroni. Il deep learning ha dimostrato un notevole successo in vari settori, tra cui il riconoscimento di immagini, l’elaborazione del linguaggio naturale, la sanità, la finanza e i veicoli autonomi.

GPT

Sta per “Generative Pre-trained Transformer”, un tipo di modello linguistico di grandi dimensioni sviluppato da OpenAI. L’architettura del modello GPT si basa sull’architettura del trasformatore, che è molto efficace per l’elaborazione di dati sequenziali come il linguaggio naturale. L’innovazione chiave dei modelli GPT è la loro natura generativa, nel senso che possono generare testo simile a quello umano in base a un determinato suggerimento o contesto. Questa capacità rende i modelli GPT altamente versatili e applicabili a un’ampia gamma di attività di elaborazione del linguaggio naturale, tra cui la generazione di testo, la traduzione linguistica, il riepilogo, la risposta a domande e altro ancora.

Hallucination

E’ un fenomeno in cui un modello di machine learning genera output che non corrispondono alla realtà o non sono coerenti con i dati di input. Le allucinazioni si verificano quando un modello produce previsioni errate o prive di senso, spesso a causa di un adattamento eccessivo, della mancanza di dati di addestramento o di limitazioni intrinseche nell’architettura del modello.

Machine Learning

E’ un sottoinsieme dell’intelligenza artificiale che si concentra sullo sviluppo di algoritmi e modelli statistici che consentono ai computer di apprendere e fare previsioni o decisioni basate sui dati, senza essere esplicitamente programmati per farlo. In sostanza, si tratta di insegnare ai computer ad apprendere modelli e relazioni dai dati per eseguire compiti specifici. Gli algoritmi di machine learning vengono addestrati su dati etichettati, costituiti da coppie input-output. Durante il processo di addestramento, l’algoritmo apprende modelli e relazioni nei dati regolando automaticamente i suoi parametri mirando a ridurre al minimo la differenza tra i risultati previsti e i risultati reali nei dati di addestramento.

Modelli linguistici di grandi dimensioni

Spesso indicati sotto la sigla LLM (Large Language Models), sono una classe di modelli di intelligenza artificiale addestrati su grandi quantità di dati testuali per comprendere e generare un linguaggio simile a quello umano. Questi modelli sono costruiti utilizzando tecniche di deep learning. Contengono da centinaia di milioni a miliardi di parametri, che vengono appresi durante il processo di addestramento, durante il quale il modello è esposto a grandi quantità di dati di testo e impara a prevedere la parola successiva in una sequenza dato il contesto delle parole precedenti. Questo processo consente ai LLM di sviluppare una profonda comprensione dei modelli linguistici e della semantica.

Reti neurali

Le reti neurali sono una classe di algoritmi di machine learning ispirati alla struttura e alla funzione del cervello umano. Sono costituiti da nodi interconnessi, o neuroni artificiali. In una rete neurale, ogni neurone riceve dati di input, applica pesi a tale input, esegue un’operazione matematica (come una somma ponderata) e quindi applica una funzione di attivazione per produrre un output. L’output di uno strato funge da input per lo strato successivo e questo processo continua attraverso la rete fino alla generazione dell’output finale. Le reti neurali apprendono dai dati attraverso un processo chiamato training. Durante l’addestramento, la rete adegua i propri pesi in base alla differenza tra il risultato previsto e il risultato reale (ovvero l’errore). Questa regolazione viene eseguita in modo iterativo utilizzando algoritmi di ottimizzazione che mirano a ridurre al minimo l’errore e migliorare le prestazioni della rete sui dati di addestramento.

Sentient AI

Si riferisce ai sistemi di intelligenza artificiale che possiedono la capacità di percepire, comprendere e rispondere al loro ambiente in maniera simile agli umani. A differenza dei tradizionali sistemi di intelligenza artificiale che si limitano a svolgere compiti specifici sulla base di regole o algoritmi predefiniti, l’intelligenza artificiale senziente mira a simulare aspetti della coscienza e della consapevolezza umana come la percezione, il ragionamento, le emozioni e l’empatia.

Prompt Engineering

L’accuratezza e l’utilità delle risposte di un ampio modello linguistico dipendono in larga misura dalla qualità dei comandi che gli vengono impartiti. I prompt engineers possono ottimizzare le istruzioni in linguaggio naturale per produrre output coerenti e di alta qualità utilizzando la minima potenza del computer.

MARCO CASARIO

Gli italiani sono tra i popoli più ignoranti in ambito finanziario.

Non per scelta ma perché nessuno lo ha mai insegnato. Il mio scopo è quello di educare ed informare le persone in ambito economico e finanziario. Perché se non ti preoccupi dell'economia e della finanza, loro si occuperanno di te.

Corsi Gratuiti

Diventare un Trader e un Investitore

© Copyright 2022 - The 10Min Trader BV - KVK: 72735481 - VAT ID: NL854377591B01

Il contenuto di questo sito è solo a scopo informativo, non devi interpretare tali informazioni o altro materiale come consigli legali, fiscali, di investimento, finanziari o di altro tipo. Nulla di quanto contenuto nel nostro sito costituisce una sollecitazione, una raccomandazione, un'approvazione o un'offerta da parte di The 10Min Trader BV  per acquistare o vendere titoli o altri strumenti finanziari in questa o in qualsiasi altra giurisdizione in cui tale sollecitazione o offerta sarebbe illegale ai sensi delle leggi sui titoli di tale giurisdizione.

Tutti i contenuti di questo sito sono informazioni di natura generale e non riguardano le circostanze di un particolare individuo o entità. Nulla di quanto contenuto nel sito costituisce una consulenza professionale e/o finanziaria, né alcuna informazione sul sito costituisce una dichiarazione esaustiva o completa delle questioni discusse o della legge ad esse relativa. The 10Min Trader BV non è un fiduciario in virtù dell'uso o dell'accesso al Sito o al Contenuto da parte di qualsiasi persona. Solo tu ti assumi la responsabilità di valutare i meriti e i rischi associati all'uso di qualsiasi informazione o altro Contenuto del Sito prima di prendere qualsiasi decisione basata su tali informazioni o altri Contenuti. In cambio dell'utilizzo del Sito, accetti di non ritenere The 10Min Trader BV, i suoi affiliati o qualsiasi terzo fornitore di servizi responsabile di eventuali richieste di risarcimento danni derivanti da qualsiasi decisione presa sulla base di informazioni o altri Contenuti messi a tua disposizione attraverso il Sito.

RISCHI DI INVESTIMENTO

Ci sono rischi associati all'investimento in titoli. Investire in azioni, obbligazioni, exchange traded funds, fondi comuni e fondi del mercato monetario comporta il rischio di perdita.  La perdita del capitale è possibile. Alcuni investimenti ad alto rischio possono utilizzare la leva finanziaria, che accentuerà i guadagni e le perdite. Gli investimenti esteri comportano rischi speciali, tra cui una maggiore volatilità e rischi politici, economici e valutari e differenze nei metodi contabili.  La performance passata di un titolo o di un'azienda non è una garanzia o una previsione della performance futura dell'investimento.La totalità dei contenuti presenti nel sito internet è tutelata dal diritto d’autore. Senza previo consenso scritto da parte nostra non è pertanto consentito riprodurre (anche parzialmente), trasmettere (né per via elettronica né in altro modo), modificare, stabilire link o utilizzare il sito internet per qualsivoglia finalità pubblica o commerciale.Qualsiasi controversia riguardante l’utilizzo del sito internet è soggetta al diritto svizzero, che disciplina in maniera esclusiva l’interpretazione, l’applicazione e gli effetti di tutte le condizioni sopra elencate. Il foro di Bellinzona è esclusivamente competente in merito a qualsiasi disputa o contestazione che dovesse sorgere in merito al presente sito internet e al suo utilizzo.
Accedendo e continuando nella lettura dei contenuti di questo sito Web dichiari di aver letto, compreso e accettato le sopracitate informazioni legali.